CHINA ENCIENDE DURANTE 100 SEGUNDOS SU “SOL ARTIFICIAL”

China avanza a pasos agigantados en la construcción del primer sol artificial en la Tierra, que imita a nuestra estrella mediante la fusión nuclear: podría ser el sustituto de los combustibles fósiles y proporcionarnos energía limpia durante millones de años.

El 2 de junio pasado el Instituto de Física del Plasma de la Academia China de Ciencias (ASIPP, por su siglas en inglés) anunciaba que su instalación EAST había conseguido un doble récord en el desarrollo de la tecnología de los reactores de energía de fusión.

El estado y prensa chinos se han apresurado a poner a esto el nombre de ‘El Sol Artificial Chino’. Un buen tanto publicitario.

Puede que tal cosa no siente muy bien a los japoneses (sus vecinos y, por tanto, antagonistas), que llevan el Sol como símbolo en sus dos banderas nacionales. Una remembranza histórica de su gran pasado imperial. La materia misma de los mitos nacionales. Siempre construidos con más pasado que futuro y presente. Por desgracia.

Pero, al fin y al cabo, dicho nombre es adecuado: es emular al Sol lo que con los reactores de fusión pretendemos.

Y tal empeño se ha convertido en una carrera a nivel mundial, ‘La carrera de la fusión’. Para la cual China cuenta con tres magnas instalaciones experimentales: los reactores tokamak HL-2A , J-TEXT (el más moderno y avanzado) y el EAST que aquí nos ocupa (acrónimo de “Experimental Advanced Superconducting Tokamak”), operativo desde 2006.

Quede claro que estas instalaciones, igual que todas las muchas otras que existen hoy por hoy en diferentes países, son instalaciones experimentales. Es decir, su objetivo no es producir energía, sino producir el conocimiento científico y tecnológico necesario para desarrollar centrales energéticas de fusión (reactores de fusión).

Así pues, solo estamos en el camino. Ahora bien… ¡vamos por el buen camino, como atestiguan estos los recientes récords chinos!

¿Cuáles son, concretamente, estos dos récords?:

Por un lado, en uno de sus experimentos, han conseguido mantener plasma de hidrógeno (el combustible de un reactor de fusión) a una temperatura de 120 millones de centígrado grados centígrados durante el tiempo récord de 101 segundos.

Y, además, en otro de sus experimentos, han conseguido mantener dicho plasma durante un tiempo de 20 segundos a la temperatura récord de 160 millones de grados centígrados.

Aún no han alcanzado la gran meta final: la ‘ignición’ (encendido) de la reacción de fusión nuclear y su posterior autosustentación (en forma de reacción en cadena). Pero lo que han logrado es una gran meta volante hacia ese fin.

Veamos por qué es así y la relevancia de lo que se pretende.

La física de la fusión

La fusión es la reacción nuclear que convierte a las estrellas en lo que son: generosos dadores espaciales de energía en forma, fundamentalmente, de radiación electromagnética (luz, visible o no).

Para hacernos una idea, es una ínfima parte de esa energía la que, en el caso de nuestro Sol, ha bastado para que naciese la vida en la Tierra (casi enteramente dependiente de ella), al mismo tiempo que mantiene nuestro sistema climático que, por nuestra parte, con tanto ahínco nos empeñamos en desequilibrar.

(Y, por cierto, una parte tan ínfima como 500 partes en un millón de millones (!) ).

Porque resulta que una estrella no es otra cosa que una gigantesca masa de gas de átomos ligeros en cuyo núcleo, debido a la intensa atracción gravitatoria, se producen las altísimas presiones y temperaturas necesarias para que estos núcleos ligeros se aproximen tanto como para que entre en juego la ‘fuerza fuerte’ (el tipo de interacción que mantiene unidos los protones y neutrones dentro del núcleo de los átomos), haciendo que se fusionen y dando lugar, así, a núcleos atómicos sucesivamente más pesados.

Dichos núcleos ligeros son, en su mayor parte, átomos de hidrógeno. El elemento primordial del cual se han creado todos los demás: desde el helio al hierro mediante este proceso (el de la vida normal de las estrellas, en tanto que “hornos de fusión”) y los átomos más pesados que el hierro mediante eventuales y fugaces sucesos hiperenergéticos, tales como explosiones de supernovas. (Tal es el origen de, por ejemplo, el uranio que tenemos en la Tierra).

n el proceso de fusión de núcleos ligeros se libera una gran cantidad de energía. De esta, una parte sirve para autosostener la reacción (en forma de reacción en cadena), mientras que la restante se transforma en fotones que, tras decenas de miles de años de carambolas, terminan aflorando en la superficie de la estrella.

Tras 20 años de intuiciones previas por otros físicos, en 1939 el físico Hans Beth publicó su artículo “Energy Production in Stars” (que le valió el Nobel de 1967) en el que describía el ‘Ciclo de Bethe’: el proceso de fusión de núcleos de hidrógeno que explicaba las estrellas como hornos nucleares de fusión tal y como, escuetamente, lo acabamos de resumir.